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Abstract
Exciton levels and fine-structure splitting in laterally coupled quantum dot molecules are
studied. The electron and hole tunnelling energies as well as the direct Coulomb interaction are
essential for the exciton levels. It is found that fine-structure splittings of the two lowest exciton
levels are contributed by the intra- and interdot exchange interactions which are greatly
influenced by the symmetry and tunnel-coupling between the two dots. As the interdot
separation is reduced, fine-structure splitting of the exciton ground state is largely increased
while those of the second and fourth states are decreased. Moreover, the dependence of the
fine-structure splitting in quantum dot molecules on the Coulomb correlation is clearly clarified.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last few years there has been intensive study of
the optical properties of single semiconductor quantum dots
(QDs), since they exhibit an atom-like energy spectrum and
sharp lines in photoluminescence and can also be conveniently
manipulated by external fields. Semiconductor QDs have been
demonstrated as one possible candidate for single-photon or
entangled two-photon sources, making them very attractive
for applications in the fields of quantum cryptography and
quantum teleportation [1–7]. In the first proposal for a
QD-based source of polarization entangled photon pairs, a
necessary condition was that the intermediate monoexciton
states for the biexciton radiative decay are energetically
degenerate [8]. However, III–V self-assembled semiconductor
QDs tend to be elongated along the [1̄10] crystal axis and
the monoexciton states are split by the anisotropic electron–
hole exchange interaction [9–14]. Consequently, much effort
has been devoted to reducing the fine-structure splitting of the
intermediate exciton states, e.g. thermal annealing and external
field tuning [15–21].

Neglecting the electron–hole exchange interaction, the
exciton ground state is four-fold degenerate. For InxGa1−xAs
QDs with C2v or lower symmetry, however, the electron–
hole exchange interaction splits the exciton ground state into
bright and dark doublets, which are separated by about a few
hundred μeV [22]. Furthermore, the bright doublets are split

into two linearly polarized states separated by some tens of
μeV [23]. At zero external field, the fine-structure splitting of
the bright doublet mainly depends on the anisotropy and size
of the QDs [12–14]. If a magnetic field is applied in a Voigt
configuration, the bright states are mixed with the dark states
through the Zeeman term and the dark exciton states become
optically active [22, 23]. Due to the Zeeman splitting induced
by the magnetic field, the fine-structure splitting of the bright
doublet could be tuned to zero by the magnetic field [6, 19].
In addition, thermal annealing [15, 16] and an in-plane electric
field [20, 21] could lead to a significant reduction of the fine-
structure splitting.

Recently, with the development of high-quality QD
structures, it has been possible to fabricate either vertically
or laterally coupled self-assembled QDs, namely a ‘quantum
dot molecule’ (QDM) [24–28]. The exciton ground states
exhibit fine structures induced by the electron and hole tunnel-
coupling between the two dots [29]. The exciton states and
interdot coupling could be manipulated by the electric field in
either a vertically or laterally coupled QDM [28, 30–35]. A
significant Stark effect [28, 30] and pronounced anticrossing
of different excitonic transitions [31] have been observed in
the photoluminescence (PL) spectra. According to several
numerical calculations [32, 35, 36], interdot coupling as well
as the symmetry between the two dots strongly influence the
exciton levels and optical properties.
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Previously, we found that fine-structure splitting of the
exciton ground state in a laterally coupled QDM could be
tuned to zero by applying an in-plane electric field of only
a few kV cm−1, which might overcome the deficiency in a
single QD [37]. Polarization entangled photon pairs might be
prepared in a QDM through biexciton radiative decay. Thus,
clarification of the mechanism of the variation of fine-structure
splitting in QDMs with various interdot separations is very
important. In this paper, we study the symmetry and tunnel-
coupling effects on the fine-structure splitting of exciton states
in QDMs. Exciton levels of symmetric and nonsymmetric
QDMs without the electron–hole exchange interaction are
given, and we note that the exciton level spacing is much
larger than the electron–hole exchange energies. Fine-structure
splittings of the two lowest exciton levels are contributed
by the intra- and interdot exchange interactions. Symmetry
and tunnel-coupling in QDMs strongly influence the exciton
envelope functions, and therefore it is interesting that intra- and
interdot exchange interactions might be strongly dependent on
the symmetry and tunnel-coupling. Moreover, the variations of
the fine-structure splittings of exciton ground and excited states
are compared and discussed.

In section 2, a microscopic theory of exciton levels and
fine-structure splitting in a QDM is formulated. In section 3,
exciton levels in a QDM without the exchange interaction
are given and discussed. Fine-structure splittings of a few
low-lying bright exciton states are shown for both symmetric
and nonsymmetric QDMs. The intra- and interdot parts of
the splittings of the two lowest exciton levels are given and
compared. The effects of the symmetry and tunnel-coupling as
well as the Coulomb correlation are clearly clarified. Finally,
the results are summarized in section 4.

2. Description of exciton levels and fine-structure
splitting

The exciton fine-structure splitting in the semiconductor QDs
is contributed from the electron–hole exchange interaction.
Study of the electron–hole exchange interaction requires a
clear representation of the spin states of the exciton. In a
bulk III–V direct-gap semiconductor, the valence-band edge
has �8 symmetry (J = 3/2) and the conduction band edge has
�6 symmetry. For the flat InGaAs quantum dots investigated
in this paper, the light- (Jz = ±1/2) and heavy-hole (Jz =
±3/2) bands are split by several tens of meV due to the
strain introduced by the lattice mismatch. Actually, according
to an empirical tight-binding calculation [38], the proportion
of heavy-hole component in the hole ground state of a flat
InGaAs QD is as large as 98.2%. Therefore, it is reasonable
that the light-hole and spin–orbit-split J = 1/2 valence band
can be neglected since we mainly focus on the fine-structure
splittings of a few low-lying exciton states. The exciton state
is composed of four combinations of the valence band and the
conduction band, i.e.

|X〉 =
∑

m,s

∑

re,rh

ψms(re, rh)a
†
csre

avmrh |0〉, (1)

where the Wannier function representation of the creation and
annihilation operators is used, m and s are the z component of
the angular momentum of the heavy-hole valence band and the
conduction band, respectively, and ψms(re, rh) is the envelope
function with re(h) the position vector of the electron (hole).
The z component of the exciton spin for state (m, s) is s − m.
From the selection rule, the spin ± 1 exciton states might be
optically active depending on the orbital envelope functions,
while the spin ± 2 states are optically inactive, irrespective
of the orbital envelope functions. The eigenvalue equation for
ψms is given as
∑

m′s ′r ′
er ′

h

[H1 + Vex(csre, vm′r ′
h; cs′r ′

e, vmrh)]

× ψm′s ′(r ′
e, r

′
h) = Eψms(re, rh), (2)

with the spin-independent part

H1 = δrer ′
e
δrhr ′

h
δs′sδm′m

[
p2

e

2me
+ Ue(re)

+ p2
h

2mh
+ Uh(rh)− e2

ε|re − rh|
]
, (3)

where Ue (Uh) is the confinement potential for the conduction
(valence) band electron. The electron–hole exchange
interaction Vex can be approximated as

Vex(csre, vm′r ′
h; cs′r ′

e, vmrh)

≈ δrerhδr ′
er ′

h

[
δrer ′

e
V (csre, vm′re; cs′re, vmre)

+ (1 − δrer ′
e
)V (csre, vm′r ′

e; cs′r ′
e, vmre)

]
. (4)

The first (second) term of equation (4) is the so-called short-
range (long-range) exchange interaction. The long-range term
can be further approximated through the multipole expansion

V (csre, vm′r ′
e; cs′r ′

e, vmre) ≈ �μcs,vm

[1 − 3n ·t n]
|re − r ′

e|3
�μvm′ ,cs′ (5)

with

n = re − r ′
e

|re − r ′
e|
,

�μcs,vm = e
∫

d3rφ∗
cs R(r)(r − R)φvm R(r)

(6)

where φcs(vm)R(r) is a Wannier function localized at the site R.
The matrix element of Vex is given as [13]

Vanal(ms,m ′s′)
∫

d3rψ∗
ms(r, r)ψm′s ′(r, r)

+
∫

d3r divr (ψ
∗
ms(r, r)�μcs,vm )

× divr

[∫
d3r ′ψm′s ′(r ′, r ′)

�μvm′ ,cs′

|r − r ′|
]
. (7)

The analytical part Vanal can be written in matrix form as

Vanal(ms,m ′s′) = (E S
X − 8π/3μ2)

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ (8)

with (m, s) and (m ′, s′) in the order, ( 3
2 ,

1
2 ), (

3
2 ,− 1

2 ), (− 3
2 ,

1
2 ),

and (− 3
2 ,− 1

2 ). The definition of the parameters E S
X and μ can
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Figure 1. Low-lying exciton levels without the exchange interaction
as functions of the interdot separation d for two coupled identical
dots with a0 = a1 = 16 nm and b0 = b1 = 20 nm. Inset: schematic
illustration of a laterally coupled QDM.

be found in [13]. The second term of equation (7), i.e. the
nonanalytical term, has a form given by

⎛

⎜⎝

∗ 0 0 ∗
0 0 0 0
0 0 0 0
∗ 0 0 ∗

⎞

⎟⎠ (9)

where ∗ indicates nonzero matrix elements. In anisotropic
QDs, the nondiagonal elements of equation (9) are nonzero,
and thus the exciton spin ±1 states are split into two linearly
polarized states. The fine-structure splitting of the doublet is
determined by the nondiagonal elements of equation (9).

Similar to the assumption in [12], we use an in-plane
anisotropic potential to model a single QD, and the two dots
are aligned along the x axis

Ue(h) = νe(h)

[
θ

(
b0

2
− |ye(h)|

)
θ

(
a0

2
−

∣∣∣∣xe(h) + d + a0

2

∣∣∣∣

)

+ θ

(
b1

2
− |ye(h)|

)
θ

(
a1

2
−

∣∣∣∣xe(h) − d + a1

2

∣∣∣∣
)]

(10)

where the two dots with lateral size ai and bi for the i th dot are
separated by distance d , and νe (νh) is the conduction (heavy-
hole valence) band offset. The exciton envelope function in
QDM can be expanded using the Hermite polynomials as

ψ(re, rh) =
∑

i, j,m,n

Ci jmn Ai jmnui(αxe)u j (αye)

× exp
[− 1

2α
2(x2

e + y2
e )

]
um(αxh)un(αyh)

× exp
[− 1

2α
2(x2

h + y2
h)

]
(11)

where ui (x) is the Hermite polynomial, Ai jmn is the
normalization coefficient for the Hermite polynomials, Ci jmn

is the expansion coefficient and α is a variational parameter.
Since we study flat QDs in this paper, the two-dimensional
approximation is assumed in the calculation. About 4800
lowest-energy envelope basis sets are taken into account in
the diagonalization of the spin-independent matrix H1 to
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Figure 2. (a) Oscillator strengths of the four lowest exciton states of
a QDM in figure 1 (note that the curves of the second and third states
are overlapped, and symbols for the corresponding energy levels in
figure 1 are used here). (b) Tunnelling energies for the electron
(circle) and hole (square), respectively.

ensure the convergence of the calculation. We note that the
matrix elements of the Coulomb interaction could be obtained
analytically [39]. The fine-structure splitting then could be
obtained through the perturbation calculation of the exchange
interaction Vex since the exchange energy (order of magnitude
∼μeV) is much less than the exciton level spacings (order of
magnitude ∼meV). A detailed analysis of the perturbation
method is given in the appendix.

3. Numerical calculation and discussion

In QDM, the exciton levels are strongly affected by the
tunnelling of the electron and hole as well as the direct
Coulomb interaction. The tunnelling energies of the electron
and hole in the strong coupling region are much larger than the
electron–hole exchange energies. The values of the material
parameters used in the calculation are νh = 81 meV, νe =
124 meV, me = 0.034m0, mh = 0.053m0, μ = 6e Å, εr = 14.

3.1. Symmetric quantum dot molecule

In figure 1, low-lying exciton levels without electron–hole
exchange interaction for two coupled identical dots with a0 =
a1 = 16 nm and b0 = b1 = 20 nm are shown as
functions of the interdot separation d . At larger d (>8 nm),
the coupling between the two dots is very weak and the
exciton ground state energy is much closer to that of a single
isolated dot with a = 16 nm and b = 20 nm. As the
separation d decreases, the interdot coupling is enhanced and
the energy levels are split. Since the quantum confinement
and Coulomb correlation are fully taken into account and
numerically calculated, the splitting pattern is nonsymmetric
and largely distinct from the symmetric splitting pattern of the
simple parametric model [36]. We note that the four lowest
exciton states are mainly composed of the electron and hole
ground state in individual dots. Their oscillator strengths are
shown as functions of d in figure 2 (a). As d decreases, the
oscillator strength of the ground state decreases while that of
the fourth state increases. However, the second and third states

3
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Figure 3. (a) Fine-structure splitting of the exciton ground state with
(square) and without (open square) the Coulomb correlation, and of
the fourth exciton state with (triangle) and without (open triangle) the
Coulomb correlation of QDM in figure 1. (b) λ1,intra and λ1,inter as
functions of d .

are always optically inactive. As d > 7.0 nm, the oscillator
strength of the fourth state becomes negligibly small compared
with that of the ground state. In order to better understand
the exciton levels, it is helpful to give the electron and hole
tunnelling energies ti=e,h = (E−

i − E+
i )/2 where E+

i and E−
i

are energies of single-carrier bonding and antibonding states,
respectively. Figure 2(b) shows the tunnelling energies of
the electron and hole, which are calculated by the numerical
diagonalization of the single-particle Hamiltonian. As d
decreases from 9.0 nm to 1.0 nm, the absolute values of
the tunnelling energies for the electron (hole) increase from
0.79 meV (0.50 meV) to 8.17 meV (5.25 meV).

Exciton levels of a QDM without the exchange interaction
are each four-fold degenerate and the level spacing is around
several meV. If the exchange interaction is included, each of
the exciton levels is split into fine-structures. One doublet is
composed of exciton spin ±2 states, and the other is composed
of exciton spin ±1 states. For symmetric QDMs in the strong
coupling region, the spin ±1 doublets of the exciton ground
and fourth states as shown in figure 1 are optically active and
could be observed in the PL and PL-excitation spectra. In
figure 3 (a), fine-structure splittings of the exciton ground (δ1)
and fourth states (δ4) in symmetric QDMs with a1 = a0 =
16 nm and b1 = b0 = 20 nm are shown as functions of d .
At larger d , the fine-structure splitting δ1 is negative, e.g. δ1 =
−35 μeV at d = 9.0 nm. As d decreases, δ1 increases from
negative values to positive values. At d ≈ 4.4 nm, δ1 is zero.
However, δ4 decreases from zero at larger d to −150 μ eV at

d = 1.5 nm. Although tunnel-coupling induced splitting is
negligible at d = 9.0 nm as shown in figure 1, fine-structure
splitting of the exciton ground state is very different from that
of the exciton ground state (−66 μeV) in a single isolated dot
of the same size.

According to equations (7) and (9), fine-structure splitting
of the exciton ground state can be approximated to first-order
as

δ1 = 2
∑

r �=r ′
e

ψ1,s−m=1(r, r)ψ1,−1(r
′, r ′)Vex

= λ1,intra + λ1,inter (12)

with
λ1,inter = 2

∑

r �=r ′,xx′<0

ψ1,1(r, r)ψ1,−1(r
′, r ′)Vex,

λ1,intra = 2
∑

r �=r ′,xx′>0

ψ1,1(r, r)ψ1,−1(r
′, r ′)Vex.

(13)

whereψi,s−m(re, rh) is the i th exciton eigenfunction of H1 with
exciton spin z component s−m, λ1,intra is indeed the long-range
exchange interaction within individual dots, and λ1,inter is that
between the two dots. Figure 3(b) shows λ1,inter and λ1,intra as
functions of d . λ1,inter remains about 20 μeV while λ1,intra is
greatly changed from −54 μeV at d = 9.0 nm to 50 μeV at
d = 1.0 nm.

As discussed in section 2, ψ(r, r) is directly related to
the calculation of the exchange interaction, and therefore it
is important for the study of the variation of fine-structure
splitting. In figures 4(a) and (b), ψ1(r, r) and ψ4(r, r) are
plotted, respectively. ψ1(r, r) is composed of two s state-
like functions in individual dots. For two dots without the
tunnel-coupling [40], interdot exchange interaction (i.e. the
Förster interaction) is monotonically enhanced as d is reduced.
However, if the tunnel-coupling cannot be neglected as
shown in figure 4(a), amplitudes of two s state-like functions
are reduced at smaller d , which largely compensates the
enhancement of λ1,inter at smaller d in the case of neglecting
the tunnel-coupling. The consequence is that λ1,inter remains
almost constant in the range interdot separations of a few
nanometres, as shown in figure 3(b). As d becomes even
larger and the tunnel-coupling is negligible, λ1,inter will be
proportional to (d + a0)

−3 and approach zero as d → ∞.
Thus δ1 will approach the value of a single isolated QD
of the same size. Moreover, two s state-like functions are
strongly overlapped at smaller d and the anisotropic shape of
ψ1(r, r) in individual dots is largely changed. That is why
λ1,intra is greatly varied in the strong coupling region. ψ4(r, r)
is more complicated and there are two nodes along the x
axis. Therefore it is meaningless to divide δ4 into the intra-
and interdot exchange interactions. As shown in figure 4(b),
ψ4(r, r) almost disappears at larger d and is largely enhanced
at smaller d . The second and third states are always optically
inactive. ψ2(r, r), as shown in figure 4(c) for example, is
completely antisymmetric.

The Coulomb correlation between the electron and hole
is important for InGaAs QDs with sizes that are comparable
to or much larger than the exciton Bohr radius. The exciton
envelope function will be greatly changed by the Coulomb
correlation and thus the exciton fine-structure splitting could

4
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Figure 4. (a) ψ1(r, r), (b) ψ4(r, r) and (c) ψ2(r, r) of QDM in figure 1 for d = 2.0, 4.5 and 9.0 nm, respectively.
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Figure 5. ψ1(r, r) along the y = 0 axis in the QDM of figure 1 at
d = 6.0 nm with (square) and without (dash line) the Coulomb
correlation.

be greatly influenced. Fine-structure splitting of the exciton
ground state in a single QD (a0 = 16 nm, b0 = 20 nm)
without the Coulomb correlation is −39 μeV, the deviation
of which from the value including the Coulomb correlation
is as large as 41%. In QDMs, the Coulomb correlation is
also very important. Fine-structure splitting of the exciton
ground and fourth states without the Coulomb correlation in
the same QDM are compared with those that take into account
the Coulomb correlation in figure 3. It can be seen that
the exciton fine-structure splitting is very different in those
with and without the Coulomb correlation. For instance, at
d = 6.0 nm, δ1 ≈ 0 for the case of an independent electron
and hole, while δ1 = −21 μeV for the case of a correlated
electron and hole. ψ1(r, r) with and without the Coulomb
correlation is shown along the y = 0 axis in figure 5 for
d = 6.0 nm, respectively. ψ1(r, r) in the correlated case
is obviously larger than that in the independent one. That is

why the exchange interaction and δ1 are largely changed by
the Coulomb correlation in QDMs.

The numerically calculated value of the fine-structure
splitting −66 μeV in a single QD with a = 16 nm, b = 20 nm
(d → ∞ limit of QDMs) is consistent with the experimental
results of InGaAs QDs with similar sizes [23]. Larger values of
the fine-structure splitting might arise from QDs with stronger
anisotropy. Although it is now possible to fabricate laterally
coupled InGaAs QDs [28], systematic experimental studies of
the fine-structure splitting of exciton states in laterally coupled
InGaAs QDMs have not yet been reported.

3.2. Nonsymmetric quantum dot molecule

In experimental growth conditions there is size fluctuation in
self-assembled quantum dots and it may be difficult to obtain
two coupled identical dots. Thus it is important to study the
fine-structure splitting in nonsymmetric QDMs. In figure 6(a),
the four lowest exciton levels without the exchange interaction
for two coupled nonidentical dots with a0 = a1 = 16 nm,
b0 = 19 nm and b1 = 20 nm are shown as functions of
the interdot separation d . As d > 8.0 nm, the energies of
the exciton ground and second states are much closer to the
exciton ground state energies of the isolated right and left QDs,
respectively. As the separation d decreases, the ground state
energy becomes lower. Their oscillator strengths are shown
as functions of d in figure 6(b). The oscillator strength of the
ground state first increases and then decreases while that of the
fourth state increases monotonically as d decreases. In contrast
to the identical case, as shown in figure 2(a), the second and
third states become optically active. Compared with that of the
ground state, the oscillator strength of the third state remains

5
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Figure 6. (a) The four lowest exciton levels without the exchange
interaction and (b) the corresponding oscillator strengths as functions
of d for two coupled nonidentical dots with a0 = a1 = 16 nm,
b0 = 19 nm and b1 = 20 nm.

negligibly small. At larger d , the oscillator strength of the
second state is comparable with that of the ground state while
it decreases monotonically as d approaches zero.

Fine-structure splittings of three low-lying bright exciton
levels are shown as functions of d for the two nonidentical dots
in figure 7(a). Similar to the case of two identical dots, δ1 at
larger d is negative, e.g. δ1 = −56 μeV at d = 9.0 nm. As d
decreases, δ1 increases monotonically from negative values to
positive values. At d ≈ 3.8 nm, δ1 is zero. δ4 decreases from
zero at larger d to −150μeV at d = 1.5 nm. The fine-structure
splitting δ2 of ψ2 decreases from −48 μeV at d = 9.0 nm
to −97 μeV at d = 3.0 nm. Similar to the definition in
equation (13), the inter-and intradot part of δ2 can also been
given. Figure 7(b) shows λ1(2),inter and λ1(2),intra as functions of
d . λ1,intra is greatly changed from −56 μeV at d = 9.0 nm
to 54 μeV at d = 1.0 nm. In contrast to the identical case,
λ1,inter is zero at d = 9.0 nm and is increased as d is reduced.
For the second state ψ2, λ2,inter (λ2,intra) is decreased from
−3 μeV (−45 μeV) at d = 9.0 nm to −37 μeV (−60 μeV) at
d = 3.0 nm.

In nonidentical cases, ψ1(r, r) is almost localized in
the larger dot at d = 9.0 nm as shown in figure 8(a),
since the tunnelling energies become much smaller than the
orbital energy difference between the two dots. According
to equation (13), λ1,inter is proportional to the product of the
two s state-like functions in individual dots of ψ1(r, r). In
symmetric QDMs, the two s state-like functions of ψ1(r, r)
approach constants as d > 9 nm, and thus λ1,inter of symmetric
QDMs will be simply proportional to (d + a0)

−3 as d →
∞. However, ψ1 of nonsymmetric QDMs becomes much
more localized in the right QD at larger interdot separations,
and, as a result, λ1,inter rapidly decays to zero at larger d in
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Figure 7. (a) Fine-structure splitting of the ground (square), second
(circle) and fourth (triangle) states of QDM in figure 6. (b) λ1,intra,
λ1,inter, λ2,intra and λ2,inter as functions of d .

nonsymmetric QDMs as shown in figure 7(b). We note that
λ1,inter is different from the Förster interaction in the definition.
According to [40], the Förster interaction is defined in the
case of negligible tunnel-coupling between the two dots. It
is always proportional to R−3, irrespective of the symmetry
of two dots, where R is the centre-to-centre distance of the
two dots. However, λ1,inter only represents the interdot part of
the exchange interaction that contributes to the fine-structure
splitting of the ground state, and obviously has that meaning
even with tunnel-coupling. We note that in symmetric QDMs
at larger d where the tunnel-coupling is negligibly small,
λ1,inter/2 actually becomes the same as the Förster interaction.
In nonsymmetric QDMs at larger d , ψ1 and ψ2 are localized in
larger and smaller dots, respectively, and the Förster interaction
is actually the exchange interaction coupling between ψ1 and
ψ2 (refer to the appendix).

Similar to the identical case, ψ4(r, r) has two nodes along
the x axis and almost vanishes at larger d , as shown in
figure 8(b). ψ2(r, r) is very localized in the smaller dot at
d = 9.0 nm as shown in figure 8(c) and therefore λ2,inter,
similar to λ1,inter, also approaches zero at larger d . The
values of the functions localized in individual dots of ψ2(r, r)
have opposite signs while those of ψ1(r, r) have the same
sign. Thus, according to equation (13), λ1,inter and λ2,inter have
opposite signs, i.e. λ1,inter > 0 and λ2,inter < 0, as shown in
figure 7(b).

4. Summary

We formulate a microscopic theory of exciton fine-structure
splitting in laterally coupled QDMs taking into account the

6
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(a)

(b)

(c)

Figure 8. (a) ψ1(r, r), (b) ψ4(r, r) and (c) ψ2(r, r) of QDM in figure 6 for d = 2.0, 4.5 and 9.0 nm, respectively.

Coulomb correlation between the electron and hole. We choose
the sizes of QDs to resemble those grown in experiments. In
typical QDMs, the electron and hole tunnelling energies and
the direct Coulomb interaction are essential for the exciton
levels and envelope functions. As the interdot separation is
reduced, fine-structure splitting of the exciton ground state
in QDMs is largely increased while those of the second and
fourth states are decreased. At a proper separation, fine-
structure splitting of the ground state approaches zero. Fine-
structure splittings of the exciton ground and first excited
states could be divided into the intra- and interdot exchange
interactions, which are sensitive to the tunnel-coupling and
symmetry of the QDMs. In symmetric QDMs, the interdot
part is almost unchanged in the range of interdot separation of
a few nanometres, while in nonsymmetric QDMs the interdot
part is rapidly reduced to zero at larger interdot separations.
In both symmetric and nonsymmetric cases, the intradot part
is greatly varied by the tunnel-coupling, and the fine-structure
splitting of the exciton ground state could be varied by about
100 μeV. The fine-structure splitting of the fourth state is
greatly enhanced at smaller d while it approaches zero at larger
d . In summary, this study provides an efficient way of largely
tuning the exciton fine-structure splitting in semiconductor
QDs, which is useful and necessary for fine-tuning by the
external field.
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Appendix

Using the four lowest eigenstates of H1 in symmetric QDMs
as basis, the matrix representation of (H1 + Vex) is given as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|ψ1 + 1〉 |ψ1 − 1〉 |ψ2 + 1〉 |ψ2 − 1〉 |ψ3 + 1〉
E1 + σ11 γ11 0 0 0
γ11 E1 + σ11 0 0 0
0 0 E2 + σ22 γ22 σ23

0 0 γ22 E2 + σ22 γ23

0 0 σ23 γ23 E3 + σ33

0 0 γ23 σ23 γ33

σ14 γ14 0 0 0
γ14 σ14 0 0 0

|ψ3 − 1〉 |ψ4 + 1〉 |ψ4 − 1〉
0 σ14 γ14

0 γ14 σ14

γ23 0 0
σ23 0 0
γ33 0 0

E3 + σ33 0 0
0 E4 + σ44 γ44

0 γ44 E4 + σ44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the exciton spin ±2 states are neglected since they
are decoupled from the spin ±1 states, |ψi ,±1〉 is the full
exciton wavefunction with orbital envelope ψi and spin ±1,
Ei is the i th eigenvalue of H1, γi j = 〈ψi ,±1|Vex|ψ j ,∓1〉
and σi j = 〈ψi ,±1|Vex|ψ j ,±1〉. It should be noted that γi j

is only contributed by the long-range exchange interaction.
Moreover, as shown in figure 4, both ψ1(r, r) and ψ4(r, r)
are symmetric with respect to the x = 0 and y = 0 axis,
while both ψ2(r, r) and ψ3(r, r) are symmetric with respect
to the y = 0 axis but antisymmetric with respect to the
x = 0 axis. Therefore, according to equations (5) and (7),

7
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the matrix elements 〈ψi , s|Vex|ψ j ,m〉 with (i, j) or ( j, i) =
(1, 2), (1, 3), (2, 4), and (3, 4) are zero.

Although the fine-structure splitting becomes comparable
with the energy splitting without exchange interaction in
symmetric QDMs at larger d (e.g. figures 1 and 3(a)),
the exchange interaction couplings between ψ1 and ψ2 and
between ψ3 and ψ4 are zero. Moreover, the exchange
couplings between ψ1 and ψ4 and between ψ2 and ψ3 are
much smaller than the level spacings (E4 − E1) and (E3 −
E2), respectively. For the nonsymmetric QDMs at larger d ,
ψ1 and ψ2 become localized in separate dots, and thus the
exchange coupling between ψ1 and ψ2 is actually the Förster
interaction, which is less than 10 μeV as d > 9.0 nm. The
exchange coupling between ψ3 and ψ4 rapidly decays to zero
at larger d since the amplitude of ψ3(r, r) and ψ4(r, r) almost
vanishes at larger d as shown in figure 8. However, the level
spacings (E2 − E1) and (E4 − E3) as shown in figure 6(a)
approach nonzero constants at larger d (1.77 and 0.44 meV,
respectively), which are much larger than the nondiagonal
exchange interaction matrix elements. Therefore, all the
exchange coupling between two separate levels i and j (i, j =
1, 2, 3, 4) could be neglected, and the fine-structure splitting
could be effectively obtained in the first-order approximation
in both symmetric and nonsymmetric QDMs.
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